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a b s t r a c t

One-class classification (OCC) is a classification task where the training data have only one
class. The goal is to classify input data into one seen class or other unseen classes. This
paper proposes an OCC approach using a signal transformation network (OCSTN), which
aims to process univariate time-series data. The main contribution is developing a signal
transformation network (STN) that aims to transform input signals into one signal, namely
the goal signal. Moreover, the model error of the STN is a distance metric between the goal
signal and the model output. The STN model learns from one-class signals. Therefore,
model error for one class is small relative to other classes. Accordingly, OCSTN could dis-
criminate between seen and unseen classes using the model errors. The proposed OCSTN
is evaluated using two ballistocardiography (BCG) datasets. The OCSTN achieves fair results
in both AUC scores and processing speed. OCSTN has a weak point in training diverse sig-
nals. In addition, the entropy and smoothness of the goal signal are highly related to the
AUC score.

� 2022 Elsevier Inc. All rights reserved.
1. Introduction

Time series data are a set of observations obtained in chronological order. Each observation records a phenomenon at a
specific moment [1]. Such data are represented as a sequence or signal and are used in various areas, such as biomedical
signals [2], financial records [3], weather readings [4], and energy usage [5]. Time-series classification (TSC) is a significant
challenge that has attracted attention, and researchers have proposed various TSC algorithms. These methods are roughly
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classified into four groups: distance-based [6], feature-based [7], deep learning (DL)-based [8], and ensemble approaches [9].
Nevertheless, TSC is still a challenging issue. Since these methods are supervised learning, classification results are affected
due to the problems of training data, such as data imbalance [10], noisy labels [11], and outliers [12]. Moreover, the model
cannot classify data into unseen classes not included in the training data. In addition, collecting enough data is not possible
because some data are rare, dangerous to collect, and nonexistent.

One-class classification (OCC) [13–24] is a promising solution to tackling these problems. OCC is a classification task
where only training data have only one class; the classification model needs to learn from one class and classify data into
one seen class or other unseen classes. The main advantage of OCC is its function to detect unseen samples. This function
could improve binary or multiclass classification by approximating these classification problems as the set of OCC problems.
Such a method can tackle the data imbalance problems because data imbalance does not exist in one class [13]. On the other
hand, OCC algorithms can detect outliers or noise by training only normal samples.

For this purpose, the researchers proposed various OCC algorithms. Early studies were shallow methods [14–17]. These
methods are suitable for feature data, but there are limitations in the feature extraction process from image or time-series
data [18]. Recently, DL methods have been proposed to tackle image data. These methods are roughly classified into three
groups: feature extraction [18], fake unseen [19], and self-supervised approaches [20]. Nevertheless, OCC for time-series data
is still a challenging issue, and only a few studies exist for such purposes [21,22]. Therefore, considering one-class time-series
classification is a significant challenge.

One general solution is to apply the OCC algorithms in features/images into time-series data. For this idea, this study
applies the OCITN algorithm [22] to time series data. OCITN is a self-supervised approach that uses an image transformation
network (ITN) as a pretext task. ITN aims to transform all images into one image, namely, the goal image. In addition, the
model error for ITN is the distance metric between the goal image and the output of ITN. Such a network learns using only
one-class images. Therefore, the model errors for seen images are considered small relative to images belonging to unseen
classes. Accordingly, OCITN could discriminate between seen and unseen classes using the model error.

Besides, OCITN has three merits to extend into time-series data. First, OCITN shows promising results in both the AUC
score and processing speed [23]. Second, the OCITN is simple (ITN is implemented with only convolutional layers [23])
and extending into time-series is not difficult. Third, OCITN has an interesting aspect: goal image is highly related to the
AUC score (High entropy and smooth images appear to be better AUC [24]). Considering such an aspect in time-series data
is fascinating.

In summary, the motivations in this study are as follows:
Supervised time-series classification has limitations due to the problems in the training dataset.
OCC is a promising solution to address these limitations. However, only few OCC methods exist for time-series data.
We have a strong interest in extending the OCITN algorithm to time-series data.
Accordingly, this paper proposes a one-class time-series classification approach that uses a signal transformation network

(OCSTN). This strategy is an extension of the OCITN algorithm [23] to univariate time-series data. The main difference is the
data structure: while an image is a two-dimensional matrix, the signal is a one-dimensional sequence. Such a difference is
worthy of investigation. The proposed solution uses a signal transformation network (STN), which aims to transform all sig-
nals into one signal, namely goal signal. In addition, the model error of the STN is the distance metric between the goal signal
and the output of the STN. Such a network is trained using only one-class signals; the model error for seen signals should be
small relative to unseen signals. Therefore, OCSTN could discriminate between seen and unseen signals using the model
error.

The contributions in this paper are as follows:
This paper proposes a novel one-class time series classification algorithm, OCSTN, which discriminates between seen and

unseen classes using the model error of the signal transformation network (STN).
The main originality is to bring the transformation subtask to time-series data. Such a study has significant meaning

because images and time series have substantial differences in terms of data structure. In addition, the proposal includes
two novel concepts, the STN and goal signal. Furthermore, this paper is the first article that uses [49] for the experiment.

OCSTN is evaluated using two ballistocardiography (BCG) datasets [49,50]. The experiments are made with the authen-
tication and the change detection tasks. OCSTN shows fair AUC score and processing speed for the authentication task. On the
other hand, OCSTN has a weak point in training diverse signals, such as sliding windows extracted for the change detection
task.

New discussion is provided for STN structure and goal signal. According to the experiment results, linear is the best acti-
vation function in terms of AUC. In addition, the smoothness of the goal signal is related to the AUC score.

We have created a minor modification of the method from Blazquez-Garcia et al. [22] for computing the AUC score. This
contribution allows for making a comparison.

The organization of this paper is as follows. Section 2 describes related work. Section 3 presents the proposed OCSTN
framework. Section 4 and Section 5 provide the experimental results and discussion, respectively. Finally, Section 6 gives
the conclusions and future work.
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2. Related work

2.1. Time-series classification

TSC is a significant challenge and has attracted increasing attention. TSC consists of two stages: preprocessing and clas-
sification. The first stage transforms the raw signal into a suitable form for classification. Several techniques have been pro-
posed, such as wavelet transform [25], adaptive thresholding [26], wavelet-based atomic function [27], Cartan Curvatures
[2,28], and Euclidean arc length [29].

On the other hand, the classification stage can be classified into four types: distance-based, feature-based approaches, DL-
based, and ensemble approaches. Distance-based methods classify data into the same class according to the most similar
signals [6]. These methods are known as 1-nearest neighbors or K-nearest neighbors. The researchers apply various distance
metrics [21] to compute similar samples.

In contrast, the feature-based method has two stages: feature extraction and classification. Several feature extraction
methods have been proposed for time-series data, such as time-series forest [7], dissimilarity-based representation [21],
bag of features [30], and symbolic aggregate approximation (SAX) [31]. These extracted features will be inputs for the clas-
sification algorithm.

In addition, the DL-based approach extends the feature-based method in an end-to-end framework. Several types of archi-
tectures are applied to feature extraction and classification of the signal [8]. For feature extraction, Conv1D captures local
sequence patterns [32]. In addition, RNN and LSTM capture temporal information [33,34]. Moreover, residual networks
and attention improve the classification accuracy [36]. Furthermore, model optimization algorithms are proposed [37].

In addition, the ensemble approach combines multiple existing techniques and involves fusions between multiple fea-
tures and classifiers. Bai et al. combined the mean and trend features for TSC [9]. Hussain et al. applied a one-vs-all ensemble
that is combination of classifiers [35]. These studies aim to create real applications.

Nevertheless, TSC have limitations because of supervised learning, where the classification model cannot predict unseen
data not included in the training data [38]. Moreover, the classification result is affected by several dataset problems, such as
data imbalance [10], label noise [11], and outliers [12]. This study considers OCC to tackle these problems.
2.2. One-class classification

OCC is a classification problem where training data have only one seen class. The goal of OCC is to classify data into one
seen class or other unseen classes. OCC is applicable to several tasks, such as anomaly detection [39], novelty detection [40].
In addition, combining multiple OCC models could add the function of detecting unseen samples to binary and multiclass
classification.

Various OCC algorithms have been proposed in machine learning and DL. Early studies were shallowmethods, such as the
one-class support vector machine [14], local outlier factor [15], isolation forest [16], and one-class nearest neighbors [17].
These methods are effective for feature data. However, feature extraction is needed to process other data types, such as
images and time series.

Recently, DL-based OCC methods have been proposed for image data. These methods are roughly classified into three
groups: feature extraction methods [18], fake unseen methods [19], and self-supervised methods [20].

The first strategy extracts the features from images. These features are the input for the shallow OCC algorithms. An
autoencoder is a common technique for feature extraction processes. Moreover, Ruff et al. considered a convolutional neural
network as the mapping function in feature vector space and computed the SVDD in such a vector space [18].

In contrast, the fake unseen method creates fake unseen samples and trains a binary classification model between the
seen class and the fake unseen class. Several techniques like GAN [41] are applied to generate fake unseen samples. In addi-
tion, outlier exposure is the technique to import other datasets as unseen data [19].

Besides, the self-supervised approach uses the pretext task, the subtask, to support the downstream process (OCC). This
study trains the supervised model for the subtask of using seen data. Since the model is trained from only the seen class, the
model error for the seen data is small relative to the unseen data. Therefore, using model error can classify seen and unseen
data. Several tasks are proposed as pretext tasks, such as autoencoder [42], and classification of geometric transformation
[20].

Nevertheless, OCC for time-series data is still a challenging issue, and only few studies exist. Mauceri et al. proposed a
dissimilarity-based feature representation and used those features as a one-class 1-nearest neighbor classifier input [21].
A self-supervised approach is also applied for time-series data. Baldacci et al. proposed a forecasting subtask for detecting
anomalous points [43]. Moreover, Blázquez-García et al. provided a classification subtask of signal multiplication for water
leak detection [22]. Since there are few existing studies, more alternative methods are needed. This study aims to extend the
OCITN algorithm to time-series data.
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2.3. One-class image transformation network

OCITN is an OCC algorithm for image data [23]. Such an algorithm is a self-supervised approach using image transforma-
tion into one image, namely, the goal image. ITN is the transformation function between input images into a goal image. In
addition, the model error for ITN, namely, the construction error (CE), is the distance metric between the goal image and the
output of ITN. Such a network trains using only one-class images. Therefore, CE for the seen image is considered small rel-
ative to the unseen image. Accordingly, using CE could discriminate between seen and unseen classes [23].

For example, Fig. 1 shows the OCITN framework [24]. The seen and unseen images are presented as apple and banana
images, respectively. Moreover, the goal image is presented as Lenna. The ITN model trains image transformation from
apples into Lenna. Therefore, ITN could transform apples into Lenna. The core assumption is that ITN cannot transform bana-
nas into Lenna because bananas are not used to train the ITN model. Accordingly, OCITN could discriminate between seen
apples and unseen bananas using image transformation into a goal image.

OCITN is implemented using the following Equation (1).
OCITN Xð Þ ¼ Seen distðITN Xð Þ; IÞ < kð Þ
Unseen distðITN Xð Þ; IÞ � kð Þ

�
where ðITN : Xseen ! IÞ ð1Þ
where X and I are input images and a goal image, respectively. Then, ITN aims to transform seen images Xseen into goal image
I. In addition, dist (ITN(X), I) is the construction error, the distance metric between a goal image and ITN output. Finally, k is
the threshold value to discriminate between seen and unseen data [24].

The concept of the OCITN algorithm is explored in two articles. The article [23] proposed the OCITN algorithm. The paper
[24] reported the experiment results using 236 goal objects and the discussion that high entropy and smoothness of goal
images provide better AUC scores.

This study aims to extend such a transformation strategy to time-series data. The main difference is the structure
between the image and signal. While an image is a two-dimensional matrix, the signal is a one-dimensional sequence.
The main challenges are how to define a goal signal and how to transform signals.

3. One-class classification using signal transformation

This section proposes the OCC approach using a signal transformation network (OCSTN). Such a method is an extension of
the OCITN algorithm [23] into univariate time-series data. The main novelty is using the signal transformation into a goal
signal.

Fig. 2 shows the OCSTN framework, consisting of training and testing stages. In the training stage, training data include
signals for one seen class. Then, the signal transformation between these signals into one defined signal, namely, the goal
signal, is considered. The signal transformation network (STN) is trained for such purposes. Since the model training is made
using seen data, model errors for seen signals are small relative to unseen signals. Therefore, using model error could dis-
criminate between seen classes and unseen classes.

The following paragraphs provide mathematical descriptions. These equations are defined by replacing the previous Eqs.
(1) in Section 2.3. Signal data and goal signals are defined as sequences X and I, as shown in Equations (2) and (3).
Input signal X ¼ X1; X2; � � � ; XL½ � ð2Þ

Goal signal I ¼ I1; I2; � � � ; IL½ � ð3Þ

where L is the length of the signals.

STN aims to transform seen signals into a goal signal, as shown in Formula (4).
STN : Xseen ! I ð4Þ

where Xseen represents the signals included in the training data. The STN is a neural network, and its input and output are the
signals and a goal signal, respectively. The transformation process is a black box function between the input and output.
Moreover, the STN is evaluated with construction error E, which is the distance metric between the goal signal and the out-
put of the STN. Such error is computed for each input X, as shown in Eq. (5).
E Xð Þ ¼ distðSTN Xð Þ; IÞ ¼ 1
L

XL

l¼1

jSTN Xð Þl � Ilj ð5Þ
In the training stage, training data are split into Xtrain and Xvalid, as shown in Equations (6) and (7).
Xtrain ¼ Xtr1;Xtr2; � � � ;Xtrm; � � � ;XtrM½ � ð6Þ

Xvalid ¼ Xva1;Xva2; � � � ;Xvan; � � � ;XvaN½ � ð7Þ

where M and N are the numbers of the data. Xtrain is used to update the weight of the STN. In contrast, Xvalid is used to
validate STN. The STN is trained to minimize the construction error E for Xvalid, as shown in Formula (8).
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Fig. 1. One-class image transformation network [24].

Fig. 2. OCSTN framework.

T. Hayashi, D. Cimr, F. Studnička et al. Information Sciences 614 (2022) 71–86
min
1
N

XN
n¼1

EðXvanÞ ð8Þ
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T. Hayashi, D. Cimr, F. Studnička et al. Information Sciences 614 (2022) 71–86
In the testing stage, the STN transforms the testing signal X into the goal signal. Then, the model error is computed as the
distance metric between the STN output and a goal signal.

Finally, the seen and unseen classes are discriminated by using a threshold value for the model error. In summary, OCSTN
is represented as Eq. (9).
OCSTN Xð Þ ¼ Seen E Xð Þ < kð Þ
Unseen E Xð Þ � kð Þ

�
ð9Þ
where k is the threshold value to discriminate between the seen and unseen signals.

4. Experiments

This section provides the experimental results. Section 4.1 explains the dataset, Section 4.2 describes the evaluation met-
ric, and Section 4.3 provides the experimental results. Finally, Section 4.4 shows a comparison with other one-class time-
series classification algorithms.

4.1. Data

This study uses ballistocardiography (BCG) signals for training datasets. BCG is a measurement of the recoil forces of the
body in reaction to cardiac ejection of blood into the vasculature [44].

This study considers two tasks for the OCSTN experiments. The first task is authentication. The data are BCG signals col-
lected from 20 people. These signals are annotated with the ID of the signal holders [49]. The objective is to classify signals
into a correct person or not. Signals from one person are included in the training data, and other signals are regarded as
unseen. Such a setting corresponds to OCC. Table 1 provides the data balance for each class. Moreover, the length of the sig-
nal is 660.

The dataset is uploaded at [49]. Raw data are collected from four sensors and then preprocessed by the Cartan curvature
[2] and Euclidean arc length [29] to compute two signals; these signals are concatenated to obtain the model input signals.

In contrast, the second task is to detect the critical changes in the signal using a breathing dataset [50]. These data are
collected from tested individuals who change their behavior according to the measuring schedule [2]. The details are pro-
vided in Section 5.3.

4.2. Evaluation metric

The area under the ROC curve (AUC) is used as an evaluation metric. The ROC curve is a graph that plots the performance
in all thresholds, as shown in Fig. 3.

The x-axis and y-axis are the False-Positive Rate (FPR) and True Positive Rate (TPR), respectively. These values are com-
puted using Equations (10) – (11) and the confusion matrix shown in Table 2. Positive and negative correspond to seen and
unseen classes, respectively.
TPR ¼ TP
TP þ FN

ð10Þ

FPR ¼ FP
FP þ TN

ð11Þ
4.3. Experimental results

The experimental data are split into training and testing data according to 80 %: 20 %. Then, 70 % of the training data are
used to update the weights of the STN. Moreover, another 30 % of the training data are used to validate the STN. Such a split is
done with five random seeds, and the average and standard deviations are reported.

Table 3 shows the STN structure, which consists of seven Conv1D layers. For each layer, the convolution size (Conv size) is
25, and the activation function is linear. Moreover, zero-padding is applied to maintain the signal size during the convolu-
tion. In addition, the batch size and the epoch number are 16 and 100, respectively. This setting is obtained by parameter
tuning.

In addition, the goal signal is a parameter of the OCSTN algorithm. This study considers seven goal signals. Fig. 4 shows
the six goal signals used in the experiment.

These signals are selected randomly and are created using the following equations. Let In[T] be the T-th value in the n-th
goal signal In; then, all values are computed as shown in Equations (12) – (17).
I1 T½ � ¼ T
L

12Þ
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Table 1
Data balance for the dataset.

Person ID Number of signals

0 2082
1 2116
2 1990
3 1739
4 2180
5 2226
6 863
7 1600
8 2202
9 2063
10 2031
11 1540
12 1641
13 1491
14 2247
15 2108
16 1562
17 2142
18 1410
19 1862

Fig. 3. Area under the ROC curve.
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I2 T½ � ¼ T2

L2
ð13Þ

I3 T½ � ¼ 0:5 ð14Þ

I4 T½ � ¼ 1� ðL2 � TÞ2

ðL2Þ
2 ð15Þ
Table 2
Confusion matrix.

Predicted

Positive Negative

Actual Positive TP FN
Negative FP TN
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Table 3
Structure of the Signal Transformation Network.

Layer Output Shape Conv size Param # Activation Padding

1. Conv1D (None, 660, 16) 25 416 linear zero-padding
2. Conv1D (None, 660, 16) 25 6416 linear zero-padding
3. Conv1D (None, 660, 16) 25 6416 linear zero-padding
4. Conv1D (None, 660, 16) 25 6416 linear zero-padding
5. Conv1D (None, 660, 16) 25 6416 linear zero-padding
6. Conv1D (None, 660, 16) 25 6416 linear zero-padding
7. Conv1D (None, 660, 1) 25 6416 linear zero-padding

Fig. 4. Goal signals used in the experiment.
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I5 T½ � ¼ ðTmod25Þ
24

ð16Þ

I6 T½ � ¼ ððL2 � TÞÞ3

2ðL2Þ
3 þ 0:5 ð17Þ
where L is the length of the signal. This experiment is performed where L = 660.
In addition, Goal 7 is computed as the average of the training signals. Therefore, Goal 7 changes according to the training

signals. Please note that the goal signals are parameters, and other signals could be applicable as goal signals.
Table 4 provides the experimental results using these seven goal signals. Each cell shows an AUC score that corresponds

to the pair of seen users and goal signals. In addition, the reported scores are averages and standard deviations of 25
experiments.

Due to the randomness of the neural network, the AUC score has a large variance. To avoid a variance, using the summa-
tion of multiple model errors is a promising solution. Such a strategy can avoid the lowest score. Table 5 provides AUC scores
computed with a summation of five model errors. The reported score is the average of five experiments, which use 25 STN
models trained for Table 4.

Overall, the summation of model errors provides a higher AUC score than using a single model error. In both settings, goal
7 shows the best AUC score. The source code is provided at https://github.com/ToshiHayashi/OCSTN.

4.4. Comparison

The proposed OCSTN is compared with existing one-class time-series classification algorithms in terms of the AUC score
and processing time. Two comparative methods are selected as follows:

Mauceri et al. proposed a dissimilarity-based representation with a one-class 1-nearest neighbor classifier [21], which
was implemented using the source code provided by Mauceri et al. [45]. In their original paper, 12 distance metrics and
78
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Table 4
AUC scores using single model error.

Seen user Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7

0 86.0 ± 5.5 88.6 ± 2.1 67.8 ± 22.3 81.6 ± 5.8 43.4 ± 0.8 81.6 ± 7.1 88.5 ± 3.3
1 75.6 ± 5.2 77.2 ± 5.5 69.3 ± 11.5 77.3 ± 4.9 58.9 ± 0.4 70.3 ± 11.7 81.0 ± 2.7
2 68.2 ± 8.4 69.8 ± 4.9 63.5 ± 7.4 68.7 ± 5.4 56.4 ± 0.3 65.4 ± 6.7 69.7 ± 6.9
3 83.9 ± 3.2 84.1 ± 3.2 73.1 ± 9.1 81.9 ± 5.0 48.6 ± 1.6 76.8 ± 12.8 83.8 ± 6.3
4 84.3 ± 9.7 83.9 ± 6.9 81.0 ± 6.9 79.0 ± 8.5 66.5 ± 0.6 71.0 ± 18.8 84.7 ± 8.4
5 80.6 ± 5.9 83.4 ± 4.8 64.2 ± 18.2 80.6 ± 5.8 43.6 ± 0.6 78.0 ± 5.8 80.9 ± 9.3
6 70.6 ± 9.1 70.7 ± 8.8 66.6 ± 4.2 68.1 ± 8.2 48.0 ± 0.6 63.7 ± 11.0 68.5 ± 10.8
7 65.6 ± 5.1 62.5 ± 7.0 56.0 ± 13.4 63.6 ± 5.7 58.4 ± 0.3 53.8 ± 14.9 64.1 ± 7.3
8 76.2 ± 3.6 77.3 ± 3.1 70.8 ± 5.7 76.2 ± 2.7 56.6 ± 0.3 66.5 ± 9.8 78.0 ± 6.4
9 92.4 ± 4.4 90.9 ± 5.8 84.0 ± 11.1 90.9 ± 3.9 54.5 ± 1.7 88.9 ± 8.1 92.4 ± 4.9
10 98.4 ± 1.8 98.0 ± 2.5 99.1 ± 1.3 99.8 ± 0.2 100. ± 0.0 89.1 ± 17.6 98.9 ± 3.9
11 75.3 ± 10.6 74.1 ± 8.2 73.0 ± 5.4 77.6 ± 5.5 52.3 ± 0.8 63.5 ± 14.1 76.1 ± 10.4
12 70.9 ± 4.6 73.3 ± 4.1 69.3 ± 5.9 74.2 ± 4.0 53.8 ± 0.3 63.9 ± 4.4 73.0 ± 5.6
13 84.8 ± 3.7 85.8 ± 2.6 75.6 ± 11.0 84.4 ± 2.6 47.8 ± 0.9 77.0 ± 9.0 86.7 ± 2.7
14 79.9 ± 4.4 80.7 ± 4.0 70.0 ± 9.3 79.9 ± 5.3 57.0 ± 0.4 69.5 ± 11.0 82.2 ± 5.8
15 62.2 ± 1.4 61.1 ± 2.0 54.8 ± 3.4 59.5 ± 3.4 51.0 ± 0.3 56.4 ± 3.4 63.4 ± 1.7
16 90.0 ± 3.3 91.1 ± 4.6 84.8 ± 7.1 91.9 ± 3.5 61.0 ± 2.6 88.7 ± 5.8 93.8 ± 2.5
17 69.8 ± 4.1 71.5 ± 2.0 61.4 ± 8.5 68.6 ± 3.8 46.8 ± 0.6 65.9 ± 7.5 72.5 ± 1.6
18 74.0 ± 3.3 75.7 ± 2.5 73.7 ± 3.1 76.5 ± 2.6 53.0 ± 0.8 66.2 ± 8.3 72.2 ± 3.1
19 73.3 ± 9.0 75.5 ± 7.9 70.2 ± 9.8 73.5 ± 5.2 52.9 ± 0.8 63.6 ± 13.0 77.2 ± 6.7
Average 78.1 78.7 71.4 77.6 55.5 70.9 79.4

Table 5
AUC scores using the summation of five models’ errors.

Seen user Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7

0 89.6 ± 1.4 91.0 ± 0.7 86.1 ± 1.3 85.7 ± 4.1 43.3 ± 2.0 88.0 ± 2.2 90.6 ± 0.8
1 79.1 ± 3.0 80.1 ± 1.8 77.4 ± 4.7 80.3 ± 1.0 58.9 ± 1.4 76.5 ± 7.3 83.8 ± 0.7
2 71.9 ± 4.6 75.2 ± 2.7 67.0 ± 5.6 76.7 ± 2.4 56.5 ± 1.6 76.0 ± 2.1 75.9 ± 4.3
3 86.6 ± 0.8 86.8 ± 0.7 84.4 ± 2.1 85.6 ± 0.8 48.6 ± 1.3 84.2 ± 2.3 86.6 ± 0.4
4 88.9 ± 2.8 88.2 ± 2.4 87.4 ± 2.0 86.6 ± 4.6 66.6 ± 0.7 82.9 ± 6.1 89.1 ± 4.6
5 86.1 ± 2.4 87.2 ± 0.9 78.6 ± 4.3 85.6 ± 0.8 43.6 ± 1.2 85.6 ± 2.9 87.3 ± 1.2
6 76.7 ± 2.3 76.6 ± 1.2 72.1 ± 3.5 72.5 ± 3.6 48.0 ± 2.3 71.7 ± 8.4 77.2 ± 1.0
7 67.5 ± 5.8 63.9 ± 2.4 57.5 ± 12.0 67.4 ± 2.0 58.5 ± 0.8 59.1 ± 8.9 66.6 ± 5.0
8 79.3 ± 3.5 80.4 ± 0.7 76.4 ± 4.2 78.7 ± 2.3 56.6 ± 1.2 74.0 ± 5.7 80.8 ± 4.5
9 95.1 ± 1.0 94.9 ± 0.8 93.1 ± 1.7 93.0 ± 1.4 54.6 ± 2.1 94.2 ± 1.0 95.1 ± 0.5
10 100. ± 0.0 99.9 ± 0.1 100. ± 0.0 100. ± 0.0 100. ± 0.0 98.4 ± 2.7 99.9 ± 0.1
11 80.3 ± 3.2 83.0 ± 2.6 80.5 ± 1.8 81.5 ± 2.3 52.3 ± 1.9 77.3 ± 7.0 82.9 ± 2.7
12 77.7 ± 2.2 78.3 ± 1.2 74.4 ± 2.2 78.5 ± 1.6 53.8 ± 1.3 72.5 ± 8.5 75.3 ± 2.8
13 88.7 ± 0.7 88.5 ± 1.0 84.3 ± 2.0 87.7 ± 0.6 47.8 ± 1.4 85.2 ± 2.5 88.9 ± 0.9
14 84.2 ± 1.1 85.9 ± 0.5 80.2 ± 3.5 83.2 ± 2.9 57.0 ± 1.2 79.5 ± 3.7 85.8 ± 1.4
15 63.9 ± 0.6 62.7 ± 1.1 59.6 ± 2.3 61.7 ± 3.5 51.0 ± 0.8 62.1 ± 3.1 64.4 ± 0.4
16 91.5 ± 1.5 93.1 ± 1.7 89.7 ± 5.2 94.1 ± 0.9 61.2 ± 1.5 92.8 ± 2.6 94.9 ± 0.7
17 73.5 ± 1.4 73.9 ± 1.0 69.6 ± 1.3 71.7 ± 1.9 46.7 ± 1.4 73.3 ± 1.1 73.7 ± 0.7
18 77.3 ± 0.8 77.5 ± 1.2 76.7 ± 2.6 78.0 ± 2.3 53.1 ± 2.3 72.2 ± 5.1 73.4 ± 2.0
19 77.5 ± 2.9 79.2 ± 3.5 75.4 ± 3.8 76.9 ± 1.0 52.9 ± 1.4 69.3 ± 9.6 79.3 ± 4.3
Average 81.7 82.3 78.5 81.3 55.5 78.7 82.6
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8 prototypes are used for the experiment [21]. In this comparison, the k-means-based prototype and 9 distance metrics are
applied because trying all combinations is extensive, and some dissimilarity metrics require much computation time.
Applied dissimilarity metrics are Kullback Leibler divergence (KL), Autocorrelation (AC), Chebyshev (CS), City block (CB),
Cosine (Cos), Euclidean (Euc), Gaussian (Gauss), Sigmoid (Sig), and Wasserstein (WS).

Blazquez-Garcia et al. proposed a self-supervised approach using the classification of signal multiplication [22]. Such a
method is implemented by following the paper [22], but a small change is applied to compute AUC (because the original
paper did not use the AUC score [22]). According to the paper, the self-labeled dataset is created by considering four self-
labels; self-labeled signals are made as 1, 1.7, 2.4, and 3.1 times the original signal [22]. Then, the classification model is
trained from the self-labeled dataset. The RISE classifier in the sktime library [46] is applied. Finally, the classification model
is used to compute the AUC score. The previous study did not use AUC. Therefore, we decided how to compute it by model
accuracy and probability related to correct prediction. In particular, the model accuracy is computed using the ‘‘predict”
function [46]. However, since the number of self-labels is only four, the model accuracy for each data point has only five pat-
terns (100 %, 75 %, 50 %, 25 %, and 0 %). Such accuracy cannot discriminate between seen and unseen data. To address such an
issue, the probability corresponding to correct prediction is computed using the ‘‘predict_proba” function [46], which can
provide more detailed values. In the following tables, these metrics are written as Acc and Prob Acc, respectively.
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The source codes are uploaded at https://github.com/ToshiHayashi/OCSTN.
Table 6 provides a comparison result. For OCSTN, goal 7 is used as the goal signal. OCSTN shows the second-best AUC. The

method of Blazquez-Garcia et al. with Prob Acc is the best in terms of the AUC.
In addition, the processing speed is compared. While OCSTN uses GPU, comparative methods’ implementations do not use

it. For a fair comparison, the processing time is calculated in a non-GPU environment (Intel� CoreTM i9-9900 K CPU @
3.60 GHz, RAM 64 GB). Table 7 reports the processing time where training signals are taken from person ID 0. The training
time and testing times are calculated separately. The numbers of training and testing signals are approximately 1600 and
7400, respectively.

The method from Mauceri et al. is the fastest, and OCSTN is the second fastest. In addition, the approach from Blazquez-
Garcia et al. is slow in the testing stage because their system needs to create self-labeled data for all testing data. Such a
process is time-consuming and is not applicable in real-time applications. In contrast, the OCSTN requires long training
and a short testing time. Such an aspect is suitable for real-time processing. In addition, the training speed could be increased
with a GPU environment.

This result is related to the previous study for image data [23]. The classification subtask has high AUC score but is slow.
In contrast, generative subtasks like transformation are fast, but the AUC score is not the best. These aspects are trade-off
practices. OCSTN could be one of the alternatives in this trade-off.
5. Discussion

5.1. Goal signal

In the experiment, the goal signal is related to the AUC score. Goal 5 shows the lowest AUC score, and the difference is
significant compared to other signals. The reason is that the signal is not smooth, and the STN cannot output such a signal.
This result is like previous experiments with images. Smooth goal images show higher AUC scores [24].

Signal entropy [47] is computed as shown in Equation (18).
H ¼ �
X
v

pv log2ðpvÞ ð18Þ
where V is the number of value levels, and p is the probability associated with value level V. Such computation is done in the
same way as image entropy [48]. However, defining the value level is a challenge in time-series. Roughly speaking, the high-
est entropy signals do not have the same values in the whole signal. Therefore, goal signals 1, 2, and 6 have high entropy. In
contrast, goal 3 is the lowest entropy because all values in the signal are the same.

In addition, smoothness is related to the average signal derivative defined by Equation (19).
DðIÞ ¼
PL�1

i jIi � Iiþ1j
L� 1

ð19Þ
where I is the signal, and L is the length of the signal defined in Equation (3). A smaller derivative value is smoother.
Table 8 provides the signal entropy, average derivative, and average AUC scores for goal signals (Goal 7 is out of compar-

ison because the signal entropy and derivatives change according to the seen class.).
Goal 3 provides a low AUC score because its entropy is 0. In contrast, Goal 5 gives a low AUC score because it is not as

smooth as its high average derivative. On the other hand, Goal 6 shows a low AUC despite high entropy and smoothness.
The center of signal 6 has quite similar values. However, these values are not equal, and assigned to different value levels.
Such computation increases the entropy value.

In addition, Table 9 provides the signal entropy and average derivative of Goal 7 for all seen classes.
OCSTN shows a high AUC score where the average derivative is small, such as class 10 or 11. In contrast, AUC is low where

the average derivative is large, such as class 7 or 8.
Overall, the goal signals with high entropy and low derivatives provide better AUC. In future work, OCSTN should have

experimented with other goal signals. In particular, the optimization of the goal signal should be considered. Compared
to the goal image, the goal signal can easily be defined as a function with fewer parameters. Such an aspect is suitable
for optimization.
5.2. Structure of the signal transformation network and parameters

The STN is built with a convolution-only structure in the same way as the method for image data [23]. Apart from image
data, Conv2D is replaced by Conv1D because the univariate signal is a sequence. In addition, the size and shape of the con-
volution have differences because the shape of the signal is more elongated than that of the image. Furthermore, zero-
padding for the signal is applied to only the first and the last of the sequence. Therefore, the effect of zero-padding should
be smaller than that of the image.
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Table 6
Comparison results with other OCC methods (signal length is 660).

Seen user Mauceri et al. [21], Dissimilarity + One-class 1-Nearest Neighbors, kmeans-based prototype Blazquez-Garcia et al.
[22]

OCSTN (Goal 7)

KL AC CS CB Cos Euc Gauss Sig WS Acc Prob Acc 1 STN 5 STN

0 86.7 ± 0.5 69.3 ± 0.1 47.7 ± 5.0 68.9 ± 21.5 68.6 ± 17.6 74.0 ± 17.9 77.4 ± 17.3 79.2 ± 16.3 80.9 ± 15.6 84.8 ± 0.3 91.4 ± 0.6 88.5 ± 3.3 90.6 ± 0.8
1 77. 4 ± 0.8 67.8 ± 2.4 75.3 ± 0.7 75.3 ± 1.0 73.1 ± 3.2 73.6 ± 3.1 73.9 ± 3.0 74.5 ± 3.0 75.4 ± 3.6 72.1 ± 0.3 84.4 ± 0.7 81.0 ± 2.7 83.8 ± 0.7
2 68.5 ± 0.7 63.1 ± 0.8 57.8 ± 2.0 62.0 ± 4.4 59.5 ± 5.1 61.3 ± 5.4 62.4 ± 5.4 63.5 ± 5.5 64.9 ± 6.1 67.4 ± 0.2 81.8 ± 0.3 69.7 ± 6.9 75.9 ± 4.3
3 77.5 ± 0.6 60.1 ± 2.1 22.8 ± 3.0 55.2 ± 32.5 60.7 ± 27.9 67.4 ± 26.8 71.5 ± 25.3 73.8 ± 23.7 75.7 ± 22.4 82.4 ± 0.4 90.4 ± 0.6 83.8 ± 6.3 86.6 ± 0.4
4 87.0 ± 0.6 87.8 ± 0.2 83.5 ± 0.4 88.4 ± 4.9 88.8 ± 4.0 89.9 ± 4.0 90.8 ± 4.0 90.2 ± 3.8 90.7 ± 3.7 74.9 ± 0.3 92.6 ± 0.2 84.7 ± 8.4 89.1 ± 4.6
5 79.3 ± 0.5 64.9 ± 1.0 54.7 ± 4.6 69.1 ± 14.8 69.6 ± 12.1 73.3 ± 12.3 75.7 ± 12.0 76.6 ± 11.2 77.6 ± 10.6 74.0 ± 1.2 92.1 ± 0.3 80.9 ± 9.3 87.3 ± 1.2
6 74.3 ± 1.3 78.9 ± 1.2 64.9 ± 3.7 74.5 ± 10.0 75.3 ± 8.2 77.6 ± 8.1 78.9 ± 7.8 77.8 ± 7.6 78.9 ± 7.5 61.2 ± 0.7 87.6 ± 1.7 68.5 ± 10.8 77.2 ± 1.0
7 74.2 ± 0.7 52.3 ± 1.7 67.9 ± 3.1 75.0 ± 7.4 76.1 ± 6.3 78.0 ± 6.4 79.1 ± 6.1 78.1 ± 6.0 78.7 ± 5.8 69.3 ± 0.2 77.3 ± 0.8 64.1 ± 7.3 66.6 ± 5.0
8 77.5 ± 3.9 67.8 ± 1.8 73.2 ± 0.3 73.4 ± 0.6 70.1 ± 4.7 70.8 ± 4.3 71.3 ± 4.0 72.3 ± 4.3 73.5 ± 4.9 71.5 ± 0.3 86.7 ± 0.4 78.0 ± 6.4 80.8 ± 4.5
9 89.8 ± 0/3 69.9 ± 0.6 41.9 ± 7.2 67.8 ± 26.4 64.1 ± 22.2 71.4 ± 23.0 75.9 ± 22.5 78.7 ± 21.5 81.1 ± 20.7 90.0 ± 0.3 95.1 ± 0.1 92.4 ± 4.9 95.1 ± 0.5
10 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 100 ± 0.0 96.2 ± 0.2 100 ± 0.0 98.9 ± 3.9 99.9 ± 0.1
11 79.1 ± 0.9 66.5 ± 0.9 57.1 ± 3.1 70.0 ± 13.1 68.3 ± 11.0 71.7 ± 11.2 74.0 ± 11.0 74.8 ± 10.2 75.9 ± 9.8 73.1 ± 1.3 90.7 ± 0.7 76.1 ± 10.4 82.9 ± 2.7
12 74.3 ± 1.2 65.7 ± 1.5 64.5 ± 1.2 66.6 ± 2.3 64.1 ± 4.0 65.3 ± 4.1 66.1 ± 4.0 67.1 ± 4.3 68.7 ± 5.7 68.6 ± 0.2 85.9 ± 0.4 73.0 ± 5.6 75.3 ± 2.8
13 87.9 ± 0.5 66.5 ± 1.1 43.4 ± 2.5 66.4 ± 23.0 68.4 ± 19.0 73.8 ± 18.9 76.9 ± 18.0 78.8 ± 17.0 80.3 ± 16.2 84.5 ± 0.4 92.7 ± 0.4 86.7 ± 2.7 88.9 ± 0.9
14 72.4 ± 1.0 72.2 ± 2.8 70.2 ± 2.8 73.2 ± 3.6 72.3 ± 3.2 73.5 ± 3.6 74.5 ± 3.8 75.2 ± 3.7 76.4 ± 4.6 69.7 ± 0.6 90.3 ± 0.6 82.2 ± 5.8 85.8 ± 1.4
15 63.0 ± 0.4 55.7 ± 0.9 62.9 ± 0.9 67.0 ± 4.3 64.2 ± 5.4 65.9 ± 5.6 66.9 ± 5.4 66.0 ± 5.4 66.6 ± 5.2 58.9 ± 0.8 80.7 ± 0.8 63.4 ± 1.7 64.4 ± 0.4
16 84.4 ± 1.0 62.3 ± 1.2 31.7 ± 5.9 61.9 ± 30.5 69.3 ± 27.0 74.9 ± 25.3 78.5 ± 23.8 80.7 ± 22.3 82.4 ± 21.0 87.5 ± 0.2 95.7 ± 0.4 93.8 ± 2.5 94.9 ± 0.7
17 68.1 ± 0.9 65.9 ± 1.6 63.3 ± 1.0 69.3 ± 6.0 63.8 ± 9.1 66.8 ± 9.5 68.6 ± 9.2 68.8 ± 8.4 69.9 ± 8.2 66.6 ± 0.2 80.8 ± 0.8 72.5 ± 1.6 73.7 ± 0.7
18 72.3 ± 1.0 83.6 ± 1.5 81.8 ± 0.3 78.4 ± 3.5 75.4 ± 5.0 75.3 ± 4.4 75.3 ± 4.0 74.9 ± 3.8 75.5 ± 3.8 70.7 ± 0.5 91.8 ± 0.4 72.2 ± 3.1 73.4 ± 2.0
19 81.4 ± 1.5 57.6 ± 0.8 63.0 ± 1.0 73.9 ± 11.0 68.0 ± 12.2 71.4 ± 12.0 73.5 ± 11.6 73.8 ± 10.6 75.6 ± 10.8 68.7 ± 0.4 83.1 ± 0.7 77.2 ± 6.7 79.3 ± 4.3
Average 78.7 68.9 61.3 71.8 71.0 73.8 75.6 76.2 77.4 74.6 88.6 79.4 82.6
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Table 7
Processing time without GPU.

Method Training time (second) Testing time (second)

Mauceri [21] 1.39 0.93
Blazquez-Garcia [22] 840 1440
OCSTN (1 STN) 276 3.46
OCSTN (5 STNs) 1178 16.8

Table 8
Signal Entropy and Average Derivative for Six Goal Signals.

Goal Signal Signal Entropy Average Derivative AUC (1 STN) AUC (5 STN)

Goal 1 9.366 0.001513 78.1 81.7
Goal 2 9.366 0.001511 78.7 82.3
Goal 3 0 0 71.4 78.5
Goal 4 8.369 0.003021 77.6 81.3
Goal 5 4.644 0.079356 55.5 55.5
Goal 6 9.366 0.001508 70.9 78.7

Table 9
Signal Entropy and Average Derivative for Goal 7.

Seen class Signal Entropy Average Derivative AUC (1 STN) AUC (5 STN)

1 9.366 0.002704 88.5 ± 3.3 90.6 ± 0.8
2 9.366 0.003052 81.0 ± 2.7 83.8 ± 0.7
3 9.366 0.002985 69.7 ± 6.9 75.9 ± 4.3
4 9.366 0.002661 83.8 ± 6.3 86.6 ± 0.4
5 9.366 0.002864 84.7 ± 8.4 89.1 ± 4.6
6 9.366 0.002623 80.9 ± 9.3 87.3 ± 1.2
7 9.366 0.003796 68.5 ± 10.8 77.2 ± 1.0
8 9.366 0.003357 64.1 ± 7.3 66.6 ± 5.0
9 9.366 0.002824 78.0 ± 6.4 80.8 ± 4.5
10 9.366 0.002385 92.4 ± 4.9 95.1 ± 0.5
11 5.198 0.001681 98.9 ± 3.9 99.9 ± 0.1
12 9.366 0.003149 76.1 ± 10.4 82.9 ± 2.7
13 9.366 0.003300 73.0 ± 5.6 75.3 ± 2.8
14 9.366 0.003178 86.7 ± 2.7 88.9 ± 0.9
15 9.366 0.002937 82.2 ± 5.8 85.8 ± 1.4
16 9.366 0.003007 63.4 ± 1.7 64.4 ± 0.4
17 9.366 0.002576 93.8 ± 2.5 94.9 ± 0.7
18 9.366 0.003113 72.5 ± 1.6 73.7 ± 0.7
19 9.366 0.003037 72.2 ± 3.1 73.4 ± 2.0
20 9.366 0.003139 77.2 ± 6.7 79.3 ± 4.3

Table 10
Comparison of activation functions.

Activation Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6 Goal 7

linear 78.1 78.7 71.4 77.6 55.5 70.9 79.6
relu 66.3 66.8 55.3 67.3 64.3 67.2 58.9
sigmoid 64.4 65.3 52.2 61.5 59.3 67.2 58.4
softmax 50.0 50.0 50.0 50.0 50.0 50.0 50.0
softplus 70.4 67.2 52.4 70.3 65.2 72.9 66.1
softsign 70.0 68.8 51.2 62.0 64.8 68.6 71.0
tanh 71.7 72.8 55.7 68.3 65.2 68.6 72.8
selu 75.2 76.7 59.9 73.1 68.6 73.2 66.8
elu 73.0 74.0 65.1 70.3 65.8 75.3 74.0
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In addition, the activation function is changed from relu to linear because linear shows the best AUC score, as shown in
Table 10. In this comparison, the model uses only one type of activation function. The other structure is the same as that in
Table 3. The reported score is the average of AUCs from 20 seen classes (with 1 STN).

Overall, linear shows the best AUC scores. However, it is not the best activation function for Goal 5 and Goal 6. There is a
concern that if all activation functions are linear, the network collapses into a linear model. Goals 5 and 6 are not easy to
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construct by such a model. However, this problem does not affect most goal signals used in the experiment because the
OCSTN needs only the model error of the STN, and such an error can be computed even in the network collapse.

Overall, the signal transformation process is different from the image transformation. Further study is necessary to con-
sider what occurs inside the network.
5.3. Applying OCSTN to detect critical changes in the signal

In this section, OCSTN is applied to detect critical changes in the signal using the breathing dataset [50]. These data are
collected from twenty tested individuals who change their behavior according to the measuring schedule, including events
such as holding breath and changing body position [2], as shown in Table 11.

Where critical changes will exist during the time around the events. Accordingly, the OCSTN is applied to detect the sig-
nals around events.

For this purpose, training signals are created by sliding windows (size = 660) from 0 to 50 s for twenty people. These sig-
nals do not include events; there are no critical changes. On the other hand, testing signals are extracted by sliding windows
from the whole signal.

Fig. 5 shows the construction errors for all signals of user 17. Red lines indicate the time when the events start.
This error is not clear in detecting the critical part. The problem is that signals extracted by sliding windows have diver-

sity. In such a case, STN outputs from these signals have diversity and make up the variance of the construction errors.
To address such a problem, the hypothesis is that the neighboring parts of the time-series data are similar. In particular,

the signals should be seen if their neighbors are seen. Accordingly, the local minimum construction error (LMCE) is defined
as the sequence computed by applying sliding windows (size = 1000) to the construction error sequence and taking the min-
imum values from all windows. Fig. 6 shows the LMCE.

The OCSTN can detect changes in body position using LMCE. However, the OCSTN does not recognize breath holdings as
significant changes. Perhaps BCG during breath holding include a window similar to normal windows. Since OCSTN is OCC
and trains only the normal windows, the LMCE decreases where such a neighbor exists. In addition, the window size should
be an important aspect of detection. Breathing is a process with a period of approximately 3–5 s. However, the window
includes only 0.66 s, and it cannot cover the changes related to breathing. Further study is needed to address this issue.
5.4. How to apply the transformation subtask to other data types

This paper proposes an OCSTN for time-series data. In addition, OCITN was proposed for image data [23]. Therefore, the
transformation subtask had tackled to images and time series. One of the following challenges is to apply the transformation
strategy to further data types, such as multivariate-time-series data, 3D data, feature data, and text data.

OCITN can tackle multivariate time series because such data is a matrix. In addition, applying the Conv3D layer could cre-
ate a transformation network for 3D data. On the other hand, OCSTN could solve feature data. However, such data do not
have the order of the dimensions, and the convolutional transformation result will change corresponding to the feature
order. In addition, the categorical feature will be a problem for transformation. Furthermore, applying a transformation sub-
task to text data has a challenge. The process could be transforming all words or all sentences into one goal. These ideas are
future work.
6. Conclusions and future work

This study considers a one-class time-series classification problem and proposes the OCSTN algorithm for univariate sig-
nals. OCSTN considers the STN model to transform input signals into a goal signal. Such a model is trained using signals
belongs to a seen class, and the model error is used to discriminate between seen and unseen classes. The proposed OCSTN
shows a fair AUC score and reasonable processing time. Therefore, OCSTN could be considered an alternative solution for
one-class time-series classification. The most interesting outcome is the relation between AUC scores and goal signals.
OCSTN is suitable where goal signals are smooth and have high entropy.

Finally, future works are given as follows. Improving the AUC score is a significant issue. The problems are the structure of
the STN, the appropriate goal signal, and how to process the short signal. Moreover, applying OCSTN to real applications
should be considered. Deciding the threshold value is a requirement. Furthermore, applying a transformation strategy to
other data types is an exciting challenge to detect unseen data from every data type.
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Table 11
Measuring schedule [2].

Time (s) Event

0 start of measuring on back
60 breath-holding during inhalation (30 s)
120 breath-holding during inhalation (30 s)
180 breath-holding during exhalation (30 s)
240 breath-holding during exhalation (30 s)
300 underlay of legs for position change
420 turning on the side.
480 breath-holding during inhalation (30 s)
540 breath-holding during inhalation (30 s)
600 breath-holding during exhalation (30 s)
660 breath-holding during exhalation (30 s)
720 end of measuring

Fig. 5. Detecting the critical part using the construction error; the red line shows the time that the events start.
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